Building a Twitter Dataset to Find out How People View the EU

We are building a dataset to explore the relationship between the UK and the EU and how people talk about this relationship.

David Cameron EU

We are using social media – in particular Twitter – to find out what people are saying and to investigate how this changes leading up to a referendum on the UK’s membership.

We have started by building a Twitter database using the Twitter API.

Documentation | Twitter Developers

In fact, we are going to end up building three databases: one on what is in the Twitter sample stream, one gathered using specific hashtags and one gathered by following what we are calling influencers – basically those that talk specifically about the European Union and are listened to. This ranges from MPs to think tanks, to academics and to pressure groups.

Of course, Twitter data is not representative of the whole population. It is used predominantly by young (74 per cent are between 15 and 25 – see Beevolve) and politically active or by those with a particular axe to grind (‘Twitter is dominated by individuals with strong political views’ – see Barberá 2015). Nevertheless, social media is increasingly the space in which major events and political decisions are debated by large numbers of people. This became very clear during the recent referendum on Scottish independence. We will explore how the debate on the UK’s relationship with the EU is framed and reframed within Twitter and how it relates to the wider offline political conversation.

An Exhaustive Study of Twitter Users Across the World

Our Social Media Monitoring platform mines through millions of conversations every day for our customers. Out of these millions of conversations, quite a few happen to come from Twitter. We realized that we could do a large-scale in-depth study of Twitter users to better understand what is the average profile of a person using Twitter and hence this mammoth study on 36 million Twitter user profiles.

Thumbnail for Birds of the Same Feather Tweet Together: Bayesian Ideal Point Estimation Using Twitter DataBirds of the Same Feather Tweet Together: Bayesian Ideal Point Estimation Using Twitter Data

Wilf Family Department of Politics, New York University, 19 W 4th Street, 2nd Floor, New York, NY 10012. Politicians and citizens increasingly engage in political conversations on social media outlets such as Twitter. In this article, I show that the structure of the social networks in which they are embedded can be a source of information about their ideological positions.

We have started off by gathering data on specific hashtags. We started on 7 August 2015 using the terms: #eureferendum, #euref, #brexit, #no2eu, #yes2eu, #notoeu, #yestoeu, #betteroffout, #betteroffin, #voteout, #votein, #eureform, #ukineu, #Bremain, #EUpoll, #UKreferendum, #UKandEU, #EUpol, #ImagineEurope, #EdEUref, #MyImageOfTheEU, #UKRef, #ref.

The wordle shows the frequency (bigger = more) of hashtags in the dataset on 7 August 2015.

We added #referendum #eu, and #europe on 25 August 2015:

In response to events in Europe, we added #refugeesWelcome on 3 September 2015:

Across the whole time period:

Obviously there is a lot more to do and this is just a taste of what we are looking at. Look out for our regular updates as the project tracks developments in the debate on the UK’s continued membership of the EU and follow us @myimageoftheEU.

Neuropolitics Research Lab – People – Politics and International Relations (PIR)

Neuropolitics research politics experiments using fMRI brain scanning.
Politics at the University of Edinburgh.

Laura Cram is Senior Fellow, The UK in a Changing Europe, investigating The European Union in the Public Imagination: Maximising the Impact of Transdisciplinary Insights (ESRC/ES/N003985/1).

This article was originally published on the imagineEurope Storify and the blog version was taken from the ImagineFutures blog.